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OPTIMUM DESIGN FOR POTENTIAL FLOWS 

F. ANGRAND 

INRIA, 78153, Le Chesnay, France 

SUMMARY 

Described in this paper is a methodology for solving a particular class of optimum design problems in 
Fluid Mechanics, namely optimum design problems for aerofoils when the corresponding fluid flow is 
potential. The methods described in this paper operate directly in the physical space, and take 
advantage of the variational formulation of the partial differential equation modelling the flow. The 
techniques of optimal control, optimization and the finite element method are used. Numerical 
examples are also given. 

KEY woms Optimization Finite Elements Partial Differential Equations 

1. INTRODUCTION 

This paper deals with the numerical computation of optimal aerofoils. These problems have 
been studied in part by Miele,29 Labrujere et a1.,36 and Glowinski and P i r o n n e a ~ . ~ ~  From the 
mathematical point of view such problems are known as optimal shape design problems 
because one wishes to optimize a real-valued function of a solution of a Partial Differential 
Equation with respect to its domain of definition. 

The most obvious criterion for a good aerofoil is a minimal drag for a given area and a 
given lift. However, the corresponding optimum design problem involves the full Navier- 
Stokes equation at high Reynolds number. As it is desirable to study inviscid potential the 
problem has been simplified by assuming that the drag is a monotonic function of the 
smoothness of the pressure distribution on the skin of the aerofoil, itself related to the size of 
the separated boundary layer near the trailing edge. 

Once the criterion and the constraints on the shape are chosen, the equation can be 
discretized by the finite element method. Lions,”’ Cea et ~ l . , ~ ’  Pironneau,32 Murat and 
Simon,33 Marrocco and Pi ronnea~,~  and R o u s ~ e l e t ~ ~  have shown that the techniques of 
optimal control can be used to solve the problem. In the present case a direct solution as in 
MieleZ9 or an approximate solution by the method of local variations is not possible. 

In this publication the method developed in Reference 7 will be applied to the present 
problem of aerodynamics; optimal shapes of nozzles and aerofoils will be computed with 
potential incompressible and compressible flows, with some incursion into the transonic 
regime. 

In the first section the problem is defined; in the second the continuous problem is 
considered in the third discretization is effected during the finite element method of degree 
1. Sections 4 and 5 are devoted to the motion of the triangulations and to the full statement 
of the algorithm. Sections 7 and 8 are dedicated to the lifting case and to non-differentiable 
criteria. Finally, the numerical results are presented in section 9. They show good agreement 
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with exact solutions, when these are known and interesting features not in contradiction with 
the engineering know-how for the general case. 

2. CHOICE OF AN AERODYNAMICAL CRITERION 

In the aeronautical industry, numerical simulation may be used to estimate the performances 
of given shapes (lift and drag for example). They are of fundamental aid in the design of new 
aircraft. Engineers use their intuition and past experience to suggest a shape which will 
satisfy given criteria. 

Here, optimal shapes for only one criterion are sought. In potential flows, the most 
important aerodynamical criteria are related to the pressure distribution on the skin of the 
aerofoil. It is well known that separated flows increase the resistance to the motion in a fluid 
(cf. Landau and Lipschid6). It is desirable to delay the separations and wakes and these have 
to appear behind the aerofoil in such a way that the turbulent slip stream is as narrow as 
possible. But when there is a rapid decrease of the pressure along the side of the aerofoil in 
the direction of the flow, separated flows appear more easily. Therefore the shape of the 
aerofoil must be such that the pressure variation alongside of the aerofoil, where the 
pressure decreases, is the slowest and as continuous as possible. 

Consideration can be given to the minimization of the gradient of the pressure coefficient 
C,, but it is known that there are always large gradients of pressure in the neighbourhood of 
the leading edge. Thus it is desired to minimize the functional 

Let x a d  be the set of feasible shapes for the aerofoils. First, the L"(x:,) norm must be 
approximately by the L" (Cad) norm with m a large, even number. In doing so, a 
differentiable optimum design problem is obtained; a typical formulation is: 

Find an aerofoil A belonging to x& which minimizes 

E(A) = IC,(s)l" ds. 
A 

Then, using non-smooth optimization methods (see Lemar6cha12*)), also solve the following 
problem will also be solved. 

Find an aerofoil A belonging to Cad which minimizes 

E(A) =max IC,,(x)l. (2) 
x EA 

3. STATEMENT OF THE CONTINUOUS PROBLEM (INCOMPRESSIBLE CASE) 

Consider, for simplicity, an incompressible potential flow in a nozzle (cf. Figure 1). 

solution of 
Let f and c$o be two given functions; m is an even number. The potential function # is 

A 4 = 0  in 0,) 

> (3) 
a4 -=0 on I'. 
an 
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r 
Figure 1. Typical nozzle configuration 

Thus the potential function + is a solution of the linear variational problem 

V+. Vw dx = 0 Vw E V,(R), 

# - $0 E V”(0) J 
with V,(R> = {+ E H1(R) I # = 0 on rl}. 

It is desired that the following optimum design problem is solved, 

min E(R) 
a€x, 

(4) 

( 5 )  

where 

E(R) = j (Iv+I”-f)” dr.  (6) 
1- 

To solve such a problem, just discretize by the finite element method and then use 
optimization techniques which require a knowledge of the derivative of the criterion, E, with 
respect to the domain. 

4. THE DISCRETE PROBLEM 

4.2. Triangulation 

The method of finite elements is particularly well suited to optimum design problems as 
triangles follow variations of the shape quite well. 

As usual a triangulation Th of the domain ‘ n h  i s  considered, which approximates R (cf. 
Zienkie~icz’~). For simplicity it is supposed that R is a polygon, so that Qh = R. Then T;, is a 
set of triangles T such that 

u T = a ,  
TtTi, 

if T ,  and T2 belong to Th and if TI # T2, we have T1 rl T2 = 8, 
or T1 and T2 have a common side, 

or TI and T2 have a common vertex. 

(7)  



268 F. ANGRAND 

4.2. Space approximation 

Let us define VOh ={Oh E C O ( f i ) / ~ h ~ T ~  P,(T), vh/f , ,  = OVTE Th} where P,(T)  is the set of 
polynomials defined on T, whose degree is less than or equal to one; V,, is an approxima- 
tion of V,. A function vh of v " h  is completely determined by the values it takes on the set of 
nodes of Th which are not on r l h ,  the approximation of rl; this set has N(h) nodes. Define 
the functions wi by 

Wi E V O ~  
wj(xi)  = 6, for i = 1,. . . , N(h) .  

Then {wi}~:'  is a basis of VOh, and the discrete potential function & may be,explicited as 
follows: 

with 4, = (bh(xi). J 
4.3. Discretization of the problem 

To obtain an approximation of the derivative E'(S;1) of E(s1) one can discretize directly. An 
operator with bad computational properties is usually obtained. A 'safe' approach is to 
discretize E(fl), first, and then to calculate its derivative exactly. A discrete optimum design, 
is therefore desirable. 

The discrete potential function +h is a solution of 

where $Oh is an approximation of 4". 
Define, therefore, 

c 

where Ah in (11) is a subdomain of Oh 'approximating' the unknown part of the boundary as 
shown on Figure 2. 

The set Ah allows the transformation of (6) into a surface integral. It is desired to find the 
co-ordinates of the nodes of Th such that Eh(Th) is a minimum. Thus if x is the set of feasible 
locations of the nodes {xk}, k = 1, . . . , N for the triangulation, then the problem is: 

This problem is a constrained minimization problem in R2xN. 
A 

Figure 2. Representation of a half-nozzle 
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In order to use gradient methods compute 

aat,Eh(Th) = ,atifno [ E i % ( T k ) - E h ( T h ) l / a ~ , ~  (13) 

i = 1 , 2 ,  j = 1 ,  . . . ,  N, 
where T; is the triangulation obtained from Th by moving the jth node in position x, +cur 
where ff, ={a,,,, Therefore, if f is piecewise constant on Th, we have 

S E h  = Eh (TL) - E h  ( T h )  I 

Define 

Lemma 1. If the triangulation F h  is obtained from T h  by moving the jth node from xi to 
xi + aj, then 

1 Sw,(x) = -wi(x)(vwi. ffj) + O(lffil) 
VX E T k  n Ti, Vi, k such that xi, Xi E T k  ; 

if X j g  T k  then &i(X)=O. 
Proof: (see Marrocco and P i r~nneau .~ )  (See Figure 3.) 
Lemma 2. Let f be a function piecewise constant on R = ui q, then if xi goes to xi + q, we 

have 

Proof: (see Marrocco and P i r r~neau .~ )  
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X 

x ,  

Figure 3. Transformation of the triangulation when the node x, is moved. T;T,  and T\ T‘, are shown 

Let txj(x) be the function which is constant on ?E; such that 

& j ( X ) = o l j  if X € T k  andif X j € T k  

a j (x)  = O  if x E T, and if xi$ 21,. 

Now, we can compute the variation of &. 

Define 
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where Di = a, \ la, I. 

use of the differential of the cost criterion. 
Equation (4.6) can now be solved quite readily by any optimization technique on making 

5.  MOTION OF THE NODES 

It is desired to find the shape of a nozzle (or of an aerofoil). In this case x is the set of 
co-ordinates of the nodes of all proper triangulations of a, with the same topological 
properties (same number of triangles, same number of nodes.. .). 

The nodes of the triangulation can be moved using various methods. 

5.1. First method 

To remove the constraints on {xk}r it is useful to assume that all interior nodes are 
constructed from the nodes of the unknown boundary using a set of continuous mappings; 
therefore assume that there exists a function X,, such that 

Such nodes will be called associated moving nodes. 
It will be seen later that it is not necessary to know the functions xk explicitly; in fact, only 

the derivatives aXk/ax, are required. 
Furthermore, in order to avoid the nodes of the unknown boundary crossing each other, 

they can be constrained to remain on prescribed curves. It should be kept in mind that the 
solution may depend upon these curves. So 

x ,=X,( t , )  j = l , .  . . ,s, t,EIW. (22) 

These nodes are called the principal moving nodes. 

the theorem on the derivation of composite functions we have 
Now (12) is an unconstrained problem in t E W  (with respect to the t,'s) and from (20) and 

5.2. Second method 

When a gradient method with optimal step sue  is used, every node can be a principal 
moving node, but a restriction must be imposed on the step size A,,, with A,,, depending 
upon the triangulation. 
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5.3. Remark 

To avoid oscillations on r only half of the nodes on the boundary are moved 
independently. For example, if (21) is replaced by 

(21') I ~ , = k , ( t , ) ,  j=2k-1,  k = l ,  . . . ,  ~ / 2  

X , = C Y X , - ~ + ( ~ - C Y ) X , + I ,  j=2k,  k = l , .  . . , ~ / 2  

s has to be even. 

6. AN OPTIMIZATION ALGORITHM 

An optimal design algorithm belonging to the family of the gradient methods with a fixed 
step sue  is described by: 

0. Choose to and A. 
Set i = 0. 
Compute the triangulation from (21) and (22). 

1. Compute +h and n[h from (10) and (19). 
axi ax, 
ax, ' at, 

2. Compute - - for j = 1,.  . . , s, i = 1 , .  . . , N 

Compute a,,'Eh from (20). 

Compute - from (23). 
at; 

aEh 

3 .  Set hi=----, j = 1 ,  . . . ,  s. a ti 
Set ti+' = tj+ Ahj. 
Set i = i + l .  
Compute the new triangulation and go back to 1. 

7. OPTIMUM DESIGN FOR LIFTING FL,OWS 

7.1. The continuous problem 

Consider a lifting potential flow around a profile (see Figure 4). 

7.1.1. Mathematical formulation of the physical problem. The state equations hold for 
either incompressible or compressible fluids 

I V.pVd,=O in 0, 
p = ( l - k  \V~l')'''-* in a, 

-=v,.n 34 on I?,, 

a4 -=0 on I?, 
an 

an 

4 = 0  at TE+. (29) 

See Figure 5 for the definition of TE' and TE-; we have: k =-- (resp. k = 0) for 
y-1 1 
y + 1 c *  
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Figure 4. Typical profile configuration 

compressible (resp. incompressible) fluids, where c* is the critical velocity and y the ratio of 
specific heats (y = 1.4 in air). 

v, is the flow velocity at infinity, C is a cutting line, [#Ix is the jump of # across Z, relation 
(28) is the Joukowsky condition at the trailing edge. If the fluid is incompressible (24) 
reduces to A# = 0. 

This criterion for incompressible fluids is 

and for compressible fluids is 

7.1.2. Solution of the state equation. To solve the state equation # is written as 
(see for example References 18 and 22); #z is a continuous function and 
ous one which satisfies (24), (26), (29), and also 

is a discontinu- 

-=0 on r, 
an 

[# I lX  = 1. (32) 

Function (b2 satisfies (24), (25), (26) and (29) where p is calculated using the function 
# = + a2 which satisfies the state equations (24), (25), (26), (27), (29). 

So, define 

J = I v # ( T E + ) ~ ~ -  (v#(TE-)~~. 

To solve J = 0 a one-dimensional Newton method (or a secant method, alternatively) is used. 

7.1.3. Calculation ofthe gradient. The lift, a, is given. To satisfy the Joukowsky condition, 
the aerofoil must be in incidence. 

Let 8 be the angle of attack, so the potential function # depends on the boundary r and 
on the angle 8. So the notation J(T, 6 )  and E(r ,  8) can be used. It is desired to calculate the 
derivatives of E and J to solve (1) by optimization methods using the gradient of the 
criterion. 



274 F. ANGRAND 

We have formally: 

J(T ,  6) = OIIs  6 =f(r), SO E(r ,  6) = E(r ,  f(r)) = E(r). 
Consider 8E = E(r + 8r) - E(r); we have 

implying 

7.2. The discrete problem 

It is desired to minimize 

where &h satisfies 

with 

Figure 6.  Discretization near the trailing edge 
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then 

and 

then 

and 

8. SOME GENERALITIES ABOUT OPTIMUM DESIGN 
FOR NON-SMOOTH CRITERIA 

As indicated in section 2 we are concerned with the non-differentiable criterion 

E ( A )  = max IC,(x)l 
x EA 

E(A)  is a function whose gradient is not continuous, but it is differentiable almost 
everywhere. To minimize such functions, the oldest methods used are relaxation-type and 
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cutting plane. In these methods, the objective function is not monotonically decreasing from 
iteration to iteration. More recently, a new class of methods has been introduced, which 
retains the descent property, in which the direction is computed by projecting the origin onto 
a polyhedron by a set of gradients. An algorithm developped by LemarCchal et a1." will be 
used. It uses another method in which the computation of the direction is slightly more 
sophisticated. In Reference 28, a subroutine is given which can treat linearly constrained 
problems, such that 

. 
x I min E(x) 

where E is locally Lipschitz continuous. This optimization subroutine is used for differenti- 
able or non-differentiable optimum design problems. It is very efficient for solving the 
optimum design problems discussed in this paper. 

9. NUMERICAL RESULTS 

The method for incompressible and compressible potential flows was tested. In most cases 
the discretized criteria 

E L  = 1 9 (Iv<ph(2-f)2 for incompressible flows 
TtAh h(T)  

or 

S ( T )  
E t  = 1 - (pz-f)" for compressible flows 

 TEA^ h(T) 
are used. S ( T )  is the area of the triangle T belonging to A,, (see Figure 2). h(T)  is the 
distance between the frontier r,, and the node belonging to T which is not on I?,,. 

Two types of problems are solved. First inverse problems are studied. The specification of 
a desired pressure distribution is given and the corresponding shape has to be calculated. So f 
is a given function and the criterion has to be equal to zero at the end of the computation. 

Direct design problems are also studied. Geometries that are in some sense optimized for 
a specific condition have to be designed. For example, the area of the profile has to be equal 
to some given value. In that case the function f is equal to the pressure at infinity. 

9.1. Optimum design for nozzles 

Triangulations with 90 nodes and 140 triangles are used. Computation always begins with 
a rectangle. This rectangle corresponds to a half nozzle. The middle of the nozzle is fixed for 
symmetry reasons. The other nodes can move on vertical lines, with the first method. The 
functions X ,  are similarities on these lines. 

We have an inverse problem for incompressible flows. The state equation is solved by the 
Cholesky method. Figure 7(a) represents the initial triangulation. Figure 7(b) corresponds to 
the desired shape of the nozzle with its triangulation. In Figure 7(c) the evolution of r h  

during a few iterations can be seen. In Figure 7(d) the computed solution can be seen. Note 
that the final curve Tr, is the same as the desired one, but the area of the final nozzle is 
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( d )  
Figure 7 
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(a). After a few iterations 

(b). Final result 
Figure 8 

smaller than the desired one. The initial value of Ek is 0.14. After 40 iterations the value is 
0.7 x lop4. This computation takes 12s on an IBM 3033. 

In Figure 8 a nozzle is optimized for incompressible fluids. In portion C of the nozzle a 
given flow is desired. So the criterion 

E = I, (v& - f)' dX 

is minimized, where f is the desired velocity vector. Thirty iterations are necessary. The 
initial value of E is 0.4 x lo-'; the final value is 0.8 X It takes 9 s on the IBM 3033. 

9.2. Optimum design for profiles 

To solve optimum design around profiles triangulations with 600 vertices and 1080 
triangles are used. It is supposed that the flow is uniform at infinity. 

In Figure 9 this is an inverse problem for a non-lifting case; the flow is incompressible. The 
gradient method is used with optimal step size bounded with A,,,. The initial profile has a 6 
per cent thickness. The desired profile is the NACAOO12. To avoid oscillations it is 
important to move the nodes on r h  by using formula (21'). To have good accuracy at the 
trailing edge a greater number of iterations are needed than for nozzles, but a good 
approximation of the desired profile with the same number of iterations has already been 
obtained. Here we have the comparison between 40 and 70 iterations. 

In Figure 10 an inverse problem for compressible flows is solved. Optimal control2' is used 
to calculate the state equation. The initial profile is the NACAOO12; the desired profile is 
the Korn one. This is a lifting compressible case with a differentiable criterion. Iteration is 
carried out on the Section 8 optimization algorithm. We note that between the second and 
third iterations only the region near the trailing edge has moved a = 0.03. It takes one hour 
on the IBM 3033. The method with optimal step size bounded with A,,, is slower than this 
one. 
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40 it era t ions 

( a )  

70 i t e r a t i o n s  

( b )  

Figure 9 

(a). After a few iterations 

(b). Final profile 
Figure 10 
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Figure 11 is an optimization problem for subsonic compressible flows. This is a lifting 
case, a = 0-02, lVlnfl = 0.5. It is desired to optimize the NACA0012.  The desired profile 
must have the same area as the initial one. The 9 nodes at the leading edge are fixed to 
avoid obtaining an angle. The trailing edge is fixed. The algorithm is used; the vertices on 
the profile satisfy (21‘). The initial criterion was 1, the final one 0.53. It takes one hour on 
the IBM 3033. In Figure l l (a )  the pressure on NACA0012  and in Figure l l (b)  the pressure 
on the optimized profile can be seen. 

An optimum problem for transonic flows has also been studied. The method works but is 
too expensive. The state and costate equations have to be solved exactly. To do this the 
optimal control method with upwinding (there is no parameter to adjust) is used. But this is 
an iterative method. The required number of iterations increases greatly with the Mqch 
number. For subsonic flows, about 10 iterations are needed, for transonic flows it can be 100 
iterations. And we have to iterate on these problems. So only inverse problems are tested, 
not very spectacular results. The method used to solve the transonic potential flows has to be 
improved. 

Non-differentiable criteria are also used for inverse problems; this works very well. The 
results are similar to the corresponding differentiable criteria. 

10. CONCLUSIONS 

The method discussed in this paper to solve optimum design problems was introduced by 
Marrocco and Pironneau7 for the design of electromagnets. Here it has been seen that it is 
also well suited to optimum design problems in fluid mechanics. 

As there is no parameter to adjust it can be used quite easily by design engineers in 
industrial situations. 

Many variations of the above problems can be considered (other types of constraints, of 
cost criterion, etc.. .). 

A next step will be to study three-dimensional problems. 
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